
MATLAB® Production Server™
Code Deployment

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Code Deployment
© COPYRIGHT 2012–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)
October 2014 Online only Revised for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Write Deployable MATLAB Code
1

MATLAB Coding Guidelines . 1-2

State-Dependent Functions . 1-3
Does My MATLAB Function Carry State? 1-3
Defensive Coding Practices . 1-3
Techniques for Preserving State . 1-4

Deploying MATLAB Functions Containing MEX Files 1-6

Unsupported MATLAB Data Types for Client and Server
Marshaling . 1-7

Create a Deployable Archive from MATLAB Code
2

Package Deployable Archives with Production Server Compiler
App . 2-2

Package Deployable Archives from Command Line 2-5
Execute Compiler Projects with deploytool 2-5
Compile a Deployable Archive with mcc 2-5

Modifying Deployed Functions . 2-7

iii

Contents

Customizing a Compiler Project
3

Customize the Application . 3-2
Customize the Installer . 3-2
Manage Required Files in Compiler Project 3-5
Specify Files to Install with Application 3-6
Additional Runtime Settings . 3-6

Manage Support Packages . 3-7
Using a Compiler App . 3-7
Using the Command Line . 3-8

Advanced Uses of the Command Line Compiler
4

Simplify Compilation Using Macros . 4-2
Macros . 4-2
Working With Macros . 4-2

Invoke MATLAB Build Options . 4-4
Specify Full Path Names to Build MATLAB Code 4-4
Using Bundles to Build MATLAB Code 4-5

MATLAB Runtime Component Cache and Deployable Archive
Embedding . 4-7

Overriding Default Behavior . 4-8
For More Information . 4-8

iv Contents

Functions
5

Apps — Alphabetical List
6

v

Write Deployable MATLAB Code

• “MATLAB Coding Guidelines” on page 1-2
• “State-Dependent Functions” on page 1-3
• “Deploying MATLAB Functions Containing MEX Files” on page 1-6
• “Unsupported MATLAB Data Types for Client and Server Marshaling” on page 1-7

1

MATLAB Coding Guidelines
When writing MATLAB code for deployment to MATLAB Production Server you must
adhere to the same to the same guidelines as when writing code for deployment with
MATLAB Compiler™ or MATLAB Compiler SDK™. In addition, code deployed to MATLAB
Production Server must adhere to additional guidelines:

• functions cannot depend on nor change MATLAB state.

Functions deployed with MATLAB Production Server may not always execute on the
same instance of the MATLAB Runtime. Each worker access a different MATLAB
Runtime instance.

• explicitly use varargin and varargout for functions with variable inputs and
outputs.

• avoid MATLAB figure or GUI code.

Deployed MATLAB code runs on the server, any figures or GUIs created during
runtime will show up on the server machine, not the client machine. If figures or GUIs
are required to run to create the function results, make sure to close these figures at
the end of your code to avoid left over windows and leaking resources on the server.

See Also

More About
• “State-Dependent Functions” on page 1-3
• “Write Deployable MATLAB Code” (MATLAB Compiler)

1 Write Deployable MATLAB Code

1-2

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data value in a
program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited to:

• Modifying or relying on the MATLAB path and the Java® class path
• Accessing MATLAB state that is inherently persistent or global. Some example of this

include:

• Random number seeds
• Handle Graphics® root objects that retain data
• MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.
• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB

object in any way, it loads into MATLAB.
• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your function to
properly execute, you must take additional steps (listed in this section) to ensure state
retention.

When you deploy your application, consider cases where you carry state, and safeguard
against that state’s corruption if needed. Assume that your state may be changed and
code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application
program to ensure the integrity of your original MATLAB function.

 State-Dependent Functions

1-3

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your deployed
application and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your
deployed system and application has access to that cache outside of the MATLAB
environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing state.
Your options for choosing an appropriate state-preserving tool increase as your data types
become less complicated and specific.

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to
interrupt and override the current state of the MATLAB Production Server worker and
may yield unpredictable results in multiuser environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the type of data you
need to save.

• Databases provide the most versatile and scalable means for retaining stateful data.
The database acts as a generic repository and can generally work with any application
in an enterprise development environment. It does not impose requirements or
restrictions on the data structure or layout. Another related technique is to use
comma-delimited files, in applications such as Microsoft® Excel®.

• Data that is specific to a third-party programming language, such as Java and C#, can
be retained using a number of techniques. Consult the online documentation for the
appropriate third-party vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state in
MATLAB applications and workspaces. While this may be successful in some

1 Write Deployable MATLAB Code

1-4

circumstances, it is highly recommended that the data be validated and reset if needed, if
not stored in a generic repository such as a database.

 State-Dependent Functions

1-5

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that the system running
MATLAB Production Server is running the version of MATLAB Compiler used to create
the MEX files.

Coordinate with your server administrator and application developer as needed.

1 Write Deployable MATLAB Code

1-6

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB Production Server
server instances and clients:

• MATLAB function handles
• Complex (imaginary) data
• Sparse arrays

 Unsupported MATLAB Data Types for Client and Server Marshaling

1-7

Create a Deployable Archive from
MATLAB Code

• “Package Deployable Archives with Production Server Compiler App” on page 2-2
• “Package Deployable Archives from Command Line” on page 2-5
• “Modifying Deployed Functions” on page 2-7

2

Package Deployable Archives with Production Server
Compiler App

To package MATLAB code into a deployable archive:

1 Open the Production Server Compiler by typing productionServerCompiler at
the command prompt.

a On the toolstrip select the Apps tab on the toolstrip.
b Click the arrow at the far right of the tab to open the apps gallery.
c Click Production Server Compiler.

2 Create a Deployable Archive from MATLAB Code

2-2

2 In the Application Type section of the toolstrip, select Deployable Archive.
3 Specify the MATLAB files you want deployed in the package.

a In the Exported Functions section of the toolstrip, click the plus button.
b In the file explorer that opens, locate and select one or more the MATLAB files.
c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button appears
below the plus button. The name of the first file listed is used as the default
application name.

4 In the Archive Information section of the app, specify the name of the deployable
archive.

5 In the Additional files required for your archive to run section, verify that all of
the files required by the deployed MATLAB functions are included. These files are
compiled into the generated binaries along with the exported files.

The built-in dependency checker will automatically populate this section with the
appropriate files. However, if needed you can manually add any files it missed.

For more information see “Manage Required Files in Compiler Project” on page 3-
5.

6 In the Files packaged for redistribution section of the app, verify that any
additional non-MATLAB files you want packaged with the archive are listed.

This section automatically lists:

• Deployable archive (.ctf) file.
• Readme file.

You can manually add files to the list. Additional files can include documentation,
sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with Application” on page 3-6.
7 In the Include MATLAB function signature file section, select Create File to

create a JSON template file containing function signatures of the MATLAB functions
being deployed, or select Add Existing File to add an existing JSON file. When you
create a template JSON file, you need to edit it by adding parameter type and size
information.For information on how to create the JSON file, see “MATLAB Function
Signatures in JSON”. The JSON file containing function signatures is used by the
RESTful API discovery service to provide information to clients about the MATLAB
functions deployed to the server. For more information, see “Discovery Service”.

 Package Deployable Archives with Production Server Compiler App

2-3

Completing this section is optional. Create or add an existing JSON file only if you
plan on using the discovery service.

8 Click the Settings button to customize the flags passed to the compiler and the
folders to which the generated files are written.

9 Click the Package button to package the MATLAB code.
10 Verify that the generated output contains:

• for_redistribution — A folder containing the installer to distribute the
archive

• for_testing — A folder containing the raw generated files to create the
installer

• PackagingLog.txt — A log file generated by the compiler

2 Create a Deployable Archive from MATLAB Code

2-4

Package Deployable Archives from Command Line
In this section...
“Execute Compiler Projects with deploytool” on page 2-5
“Compile a Deployable Archive with mcc” on page 2-5

You can compile deployable archives from both the MATLAB command line and the
system terminal command line:

• deploytool invokes one of the compiler apps to execute a presaved compiler project
• mcc invokes the command line compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke one of the compiler apps without
opening a window.

• -build project_name — Invoke the correct compiler app to build the project and
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Compile a Deployable Archive with mcc
The mcc command invokes the raw compiler and provides fine-level control over the
compilation of the deployable archive. It, however, cannot package the results in an
installer.

To invoke the compiler to generate a deployable archive use the -W
CTF:component_name flag with mcc. The -W CTF:component_name flag creates a
deployable archive called component_name.ctf.

For compiling deployable archives, you can also use the following options.

 Package Deployable Archives from Command Line

2-5

Compiler Options

Option Description
-a filePath Add any files on the path to the generated

binary.
-d outFolder Specify the folder into which the results of

compilation are written.
class{className:mfilename...} Specify that an additional class is generated

that includes methods for the listed
MATLAB files.

2 Create a Deployable Archive from MATLAB Code

2-6

Modifying Deployed Functions
Once you have built a deployable archive, you can modify your MATLAB code, recompile,
and see the change instantly reflected in the archive hosted on your server. This is known
as “hot deploying” or “redeploying” a function.

To Hot Deploy, you must have a server created and running, with the built deployable
archive located in the server’s auto_deploy folder.

The server deploys the updated version of your archive when on the following occurs:

• Compiled archive has an updated time stamp
• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using Hot Deployment. It takes
a maximum of ten seconds to undeploy a function (remove the function from being
hosted).

 Modifying Deployed Functions

2-7

Customizing a Compiler Project

• “Customize the Application” on page 3-2
• “Manage Support Packages” on page 3-7

3

Customize the Application
You can customize the application in several ways: customize the installer, manage files in
the project, or add a custom installer path using the Application Compiler app or the
Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or
Application name field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the
Use mask option to fill any blank spaces around the icon with white or the Use border
option to add a border around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if
the name is foo, the installed executable is foo.exe, and the Windows® start menu
entry is foo. The folder created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of
the app.

• Version: The default value is 1.0.
• Author name: Name of the developer.

3 Customizing a Compiler Project

3-2

• Support email address: Email addess to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For

example, if the company name is bar, the full installation path would be
InstallRoot/bar/ApplicationName.

• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page
of the installer. On Windows systems, this information is also displayed in the Windows
Add/Remove Programs control panel.

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along
with a status bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When
the file explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

 Customize the Application

3-3

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries
onto a target system.

Windows C:\Program Files\companyName
\appName

Mac OS X /Applications/companyName/appName
Linux® /usr/companyName/appName

You can change the default installation path by editing the Default installation folder
field under Additional installer options.

A text field specifying the path appended to the root folder is your installation folder. You
can pick the root folder for the application installation folder. This table lists the optional
custom root folders for each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the
installer.

You change the default image in Additional Installer Options by clicking Select
custom logo. When the file explorer opens, locate and select a new image. You can drag
and drop a custom image onto the default logo.

3 Customizing a Compiler Project

3-4

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged
files on the target system. They provide useful information concerning any additional
setup that is required to use the installed binaries and instructions for how to run the
application.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what
additional MATLAB files are required for the application to package and run. These files
are automatically packaged into the generated binary. The compiler does not generate
any wrapper code that allows direct access to the functions defined by the required files.

If you are using one of the compiler apps, the required files discovered by the dependency
analysis function are listed in the Files required for your application to run or Files
required for your library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To
remove files, select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not
package or not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of
required files before running. Instead, it packages all the required files that are
discovered by the dependency analysis function and adds them to the generated binary
file.

You can add files to the list by passing one or more -a arguments to mcc. The -a
arguments add the specified files to the list of files to be added into the generated binary.
For example, -a hello.m adds the file hello.m to the list of required files and -
a ./foo adds all the files in foo and its subfolders to the list of required files.

 Customize the Application

3-5

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default the
installer includes a readme file with instructions on installing the MATLAB Runtime and
configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

To remove files, select the files and press the Delete key.

Caution Removing the binary targets from the list results in an installer that does not
install the intended functionality.

When installed on a target computer, the files listed in the Files installed for your end
user are saved in the application folder.

Additional Runtime Settings

See Also
applicationCompiler | libraryCompiler

3 Customizing a Compiler Project

3-6

Manage Support Packages

Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, the app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list
is determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the

mcc.xml file of the support package, and the base product of the support package is
MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In
this case, the compiler adds the information to the installation notes. You can edit

 Manage Support Packages

3-7

installation notes in the Additional Installer Options section of the app. To remove the
installation note text, deselect the support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the
support package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, use the-a flag with mcc command when packaging your MATLAB code
to specify supporting files in the support package folder. For example, if your function
uses the OS Generic Video Interface support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In
this case, you are responsible for downloading and installing the required drivers.

3 Customizing a Compiler Project

3-8

Advanced Uses of the Command
Line Compiler

• “Simplify Compilation Using Macros” on page 4-2
• “Invoke MATLAB Build Options” on page 4-4
• “MATLAB Runtime Component Cache and Deployable Archive Embedding”

on page 4-7

4

Simplify Compilation Using Macros
In this section...
“Macros” on page 4-2
“Working With Macros” on page 4-2

Macros
The compiler, through its exhaustive set of options, gives you access to the tools you need
to do your job. If you want a simplified approach to compilation, you can use one simple
macro that allows you to quickly accomplish basic compilation tasks. Macros let you
group several options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard
compilation and the multioption alternative.

Macro Bundle Creates Option Equivalence

Function Wrapper |Output
Stage ||

-l macro_option_l Library -W lib -T link:lib
-m macro_option_m Standalone application -Wmain-Tlink:exe

Working With Macros
The -m option tells the compiler to produce a standalone application. The -m macro is
equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they
provide to the compiler.

4 Advanced Uses of the Command Line Compiler

4-2

-m Macro

Option Function
-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macros

You can change the meaning of a macro by editing the corresponding macro_option file
in matlabroot\toolbox\compiler\bundles. For example, to change the -m macro,
edit the file macro_option_m in the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

Specifying Default Macros

As the MCCSTARTUP functionality has been replaced by bundle technology, the
macro_default file that resides in toolbox\compiler\bundles can be used to
specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

 mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

mcc -v -W 'lib:libfoo' -T link:lib foo.m

 Simplify Compilation Using Macros

4-3

Invoke MATLAB Build Options
In this section...
“Specify Full Path Names to Build MATLAB Code” on page 4-4
“Using Bundles to Build MATLAB Code” on page 4-5

Specify Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line, the compiler

1 Breaks the full name into the corresponding path name and file names (<path> and
<file>).

2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Path Names

For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example,
suppose you have two different MATLAB files that are both named myfile.m and they
reside in /home/user/dir1 and /home/user/dir2. The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

The compiler finds the myfile.m in dir1 and compiles it instead of the one in dir2
because of the behavior of the -I option. If you are concerned that this might be
happening, you can specify the -v option and then see which MATLAB file the compiler
parses. The -v option prints the full path name to the MATLAB file during the dependency
analysis phase.

4 Advanced Uses of the Command Line Compiler

4-4

Note The compiler produces a warning (specified_file_mismatch) if a file with a
full path name is included on the command line and the compiler finds it somewhere else.

Using Bundles to Build MATLAB Code
Bundles provide a convenient way to group sets of compiler options and recall them as
needed. The syntax of the bundle option is:

-B <bundle>[:<a1>,<a2>,...,<an>]

where bundle is either a predefined string such as cpplib or csharedlib or the name
of a file that contains a set of mcc command-line options, arguments, filenames, and/or
other -B options.

A bundle can include replacement parameters for compiler options that accept names and
version numbers. For example, the bundle for C shared libraries, csharedlib, consists
of:

-W lib:%1% -T link:lib

To invoke the compiler to produce the C shared library mysharedlib use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle will be replaced with the corresponding option
specified to the bundle. Use %% to include a % character. It is an error to pass too many or
too few options to the bundle.

Note You can use the -B option with a replacement expression as is at the DOS or
UNIX® prompt. If more than one parameter is passed, you must enclose the expression
that follows the -B in single quotes. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only parameter
being passed. If the example had two or more parameters, then the quotes would be
necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

 Invoke MATLAB Build Options

4-5

Available Bundle Files

Bundle File Creates Contents
cpplib C++ library -W cpplib:library_name -T link:lib
csharedlib C library -W lib:library_name -T link:lib
ccom COM component -W com:component_name,className,version -T

link:lib
cexcel Excel Add-in -W excel:addin_name,className,version -T

link:lib
cjava Java package -W java:packageName,className
dotnet .NET assembly -W

dotnet:assembly_name,className,framework_versi
on,security,remote_type -T link:lib

4 Advanced Uses of the Command Line Compiler

4-6

MATLAB Runtime Component Cache and Deployable
Archive Embedding

In this section...
“Overriding Default Behavior” on page 4-8
“For More Information” on page 4-8

Deployable archive data is automatically embedded directly in compiled components and
extracted to a temporary folder.

Automatic embedding enables usage of MATLAB Runtime Component Cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically
extracted

• Add diagnostic error printing options that can be used when automatically extracting
the deployable archive, for troubleshooting purposes

• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of

where you want the deployable
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache for
diagnostic reasons. This can be
very helpful if problems are
encountered during deployable
archive extraction.

Logging details are turned off
by default (for example, when
this variable has no value).

 MATLAB Runtime Component Cache and Deployable Archive Embedding

4-7

Environment Variable Purpose Notes
MCR_CACHE_SIZE When set, this variable

overrides the default component
cache size.

The initial limit for this variable
is 32M (megabytes). This may,
however, be changed after you
have set the variable the first
time. Edit the file .max_size,
which resides in the file
designated by running the
mcrcachedir command, with
the desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with the
“Overriding Default Behavior” on page 4-8 option.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable
archive will not be embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the deployable archive embedded in it, as if you
had specified a -C option to the command line.

Overriding Default Behavior
To extract the deployable archive in a manner prior to R2008b, alongside the
compiled .NET assembly, compile using the mcc's -C option.

You might want to use this option to troubleshoot problems with the deployable archive,
for example, as the log and diagnostic messages are much more visible.

For More Information
For more information about the deployable archive, see “Deployable Archive” (MATLAB
Compiler).

4 Advanced Uses of the Command Line Compiler

4-8

Functions

5

productionServerCompiler
Test, build and package functions for use with MATLAB Production Server

Syntax
productionServerCompiler
productionServerCompiler project_name
productionServerCompiler -build project_name
productionServerCompiler -package project_name

Description
productionServerCompiler opens the Production Server Compiler app for the
creation of a new compiler project.

productionServerCompiler project_name opens the appropriate compiler app with
the project preloaded.

productionServerCompiler -build project_name runs the appropriate compiler
app to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the appropriate
compiler app to build and package the specified project. The installer is generated.

Examples

Create a New Production Server Project

Open the Production Server Compiler app to create a new project.

productionServerCompiler

5 Functions

5-2

Package a Deployable Archive using an Existing Project

Open the appropriate compiler app to package an existing project file.

productionServerCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2014a

 productionServerCompiler

5-3

deploytool
Compile and package functions for external deployment

Syntax
deploytool
deploytool project_name
deploytool -build project_name
deploytool -package project_name

Description
deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project
preloaded.

deploytool -build project_name runs the appropriate compiler app to build the
specified project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

5 Functions

5-4

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

deploytool -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of the project to be compiled, specified as a character array or string.The project
must be on the current path.

 deploytool

5-5

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -W CTF:archive_name -U options mfilename1
mfilename2...mfilenameN

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1
mfilename2...mfilenameN

Description
mcc options mfilename1 mfilename2...mfilenameN compiles the functions as
specified by the options.

The options used depend on the intended results of the compilation. For information on
compiling:

• standalone applications, Excel add-ins, or Hadoop® jobs see mcc for MATLAB
Compiler

• C/C++ shared libraries, .NET assemblies, Java packages, or Python® packages see
mcc for MATLAB Compiler SDK

mcc -W CTF:archive_name -U options mfilename1
mfilename2...mfilenameN instructs the compiler to create a deployable archive (.ctf
file) for use with a MATLAB Production Server instance.

The syntax also creates the server-side deployable archive (.ctf file) for Microsoft Excel
add-ins.

mcc -W mpsxl:addin_name,className,version input_marshaling_flags
output_marshaling_flags -T link:lib options mfilename1

5 Functions

5-6

mfilename2...mfilenameN creates a client-side Microsoft Excel add-in from the
specified files that can be used to send requests to MATLAB Production Server from
Excel. Creating the client-side add-in must be preceded by creating a server-side
deployable archive (.ctf file) from the specified files. A purely client side add-in is not
viable.

• addin_name — Specifies the name of the add-in and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

• input_marshaling_flags — Specifies options for how data is marshaled between
Microsoft Excel and MATLAB.

• -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled
into NaN in MATLAB. If you do not specify this flag, blanks are marshaled into 0.

• -convertDateToString — Specifies that dates in Microsoft Excel are marshaled
into MATLAB character vectors. If you do not specify this flag, dates are marshaled
into MATLAB doubles.

• output_marshaling_flags — Specifies options for how data is marshaled between
MATLAB and Microsoft Excel.

• -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0 in
Microsoft Excel. If you do not specify this flag, NaN is marshaled into #QNAN in
Visual Basic®.

• -convertNumericToDate — Specifies that MATLAB numeric values are
marshaled into Microsoft Excel dates. If you do not specify this flag, Microsoft
Excel does not receive dates as output.

 mcc

5-7

Examples

Input Arguments
mfilename1 mfilename2...mfilenameN — Files to be compiled
list of filenames

One or more files to be compiled, specified as a space-separated list of filenames.

options — Options for customizing the output
-a | -b | -B | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -R | -S | -T | -u | -U | -v | -w |
-W | -Y

Options for customizing the output, specified as a list of character vectors or string
scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added.
Multiple -a options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB
path, so specifying the full path name is optional. These files are not passed to
mbuild, so you can include files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the
deployable archive. The folder subtree in testdir is preserved in the deployable
archive.

If the filename includes a wildcard pattern, only the files in the folder that match the
pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example,

mcc -m hello.m -a ./testdir/*

5 Functions

5-8

specifies that all files in ./testdir are added to the deployable archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at
the time of compilation, a path entry is added to the application's run-time path so that
they appear on the path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is
preserved, with some modifications, but relative to a subdirectory of the runtime
cache directory, not to the user's local folder. The cache directory is created from the
deployable archive the first time the application is executed. You can use the
isdeployed function to determine whether the application is being run in deployed
mode, and adjust the path accordingly. The -a option also creates a .auth file for
authorization purposes.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the
folder containing the file is added to the MATLAB dependency analysis path. As a
result, other files from that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications
work without any need to change the classpath as long as the Java class is not a
member of a package. The same applies for JAR files. However, if the class being
added is a member of a package, the MATLAB code needs to make an appropriate call
to javaaddpath to update the classpath with the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell
formula function.

 mcc

5-9

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and
corresponding arguments and/or other file names. The file might contain other -B
options. A bundle can include replacement parameters for compiler options that
accept names and version numbers. See “Using Bundles to Build MATLAB Code”
(MATLAB Compiler SDK).

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.
• -f

Override the default options file with the specified options file. It specifically applies to
the C/C++ shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use
different ANSI compilers for different invocations of the compiler. This option is a
direct pass-through to mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler SDK. It also causes mbuild to pass appropriate debugging flags to the
system C/C++ compiler. The debug option lets you backtrace up to the point where
you can identify if the failure occurred in the initialization of MATLAB Runtime, the
function call, or the termination routine. This option does not let you debug your
MATLAB files with a C/C++ debugger.

5 Functions

5-10

• -I

Add a new folder path to the list of included folders. Each -I option adds a folder to
the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files,
followed by directory2. This option is important for standalone compilation where
the MATLAB path is not available.

If used in conjunction with the -N option, the -I option adds the folder to the
compilation path in the same position where it appeared in the MATLAB path rather
than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

• -m

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for
defining compile-time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.
• -n

The -n option automatically identifies numeric command line inputs and treats them
as MATLAB doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is
subject to change over time):

 mcc

5-11

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at
compile time. Including -N on the command line lets you replace folders from the
original path, while retaining the relative ordering of the included folders. All
subfolders of the included folders that appear on the original path are also included. In
addition, the -N option retains all folders that you included on the path that are not
under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is
placed at the head of the compilation path. Use the –p option to conditionally include
folders and their subfolders; if they are present in the MATLAB path, they appear in
the compilation path in the same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable platform-
dependent extension is added to the specified name (for example, .exe for Windows
standalone applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under
matlabroot\toolbox to the compilation MATLAB path. The files are added in the
same order in which they appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path,
it is assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and
all its subfolders that appear on the original path are added to the compilation path
in the same order.

• If a folder is included with -p that is not on the original MATLAB path, that folder
is ignored. (You can use -I to force its inclusion.)

5 Functions

5-12

• -R

Provide MATLAB Runtime options. This option is relevant only when building
standalone applications using MATLAB Compiler. The syntax is as follows:

-R option

Option Description Target
-
logfile
,filena
me

Specify a log file name. MATLAB Compiler

-
nodispl
ay

Suppress the MATLAB nodisplay run-
time warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine
(JVM).

MATLAB Compiler

-
startms
g

Customizable user message displayed at
initialization time.

MATLAB Compiler
Standalone Applications

-
complet
emsg

Customizable user message displayed
when initialization is complete.

MATLAB Compiler
Standalone Applications

Caution When running on Mac OS X, if you use -nodisplay as one of the options
included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK,
mcc still compiles without errors and generates the results. But the -R option doesn't
apply to these libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets
its own MATLAB Runtime context. The context includes a global MATLAB workspace
for variables, such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context.

 mcc

5-13

This ensures that changes made to the global or base workspace in one instance of the
class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple
instances of a class are created, they use the context created by the first instance
which saves startup time and some resources. However, any changes made to the
global workspace or the base workspace by one instance impacts all class instances.
For example, if instance1 creates a global variable A in a singleton MATLAB
Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these
specific targets:

Target supported by Singleton MATLAB
Runtime

Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

.NET assembly Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

COM component • Using the Library Compiler app, click
Settings and add -S to the Additional
parameters passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description
compile:exe Generate a C/C++ wrapper file, and

compile C/C++ files to an object form
suitable for linking into a standalone
application.

5 Functions

5-14

Target Description
compile:lib Generate a C/C++ wrapper file, and

compile C/C++ files to an object form
suitable for linking into a shared library
or DLL.

link:exe Same as compile:exe and also link
object files into a standalone
application.

link:lib Same as compile:lib and also link
object files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The
argument applies only to the generic COM component and Microsoft Excel add-in
targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.
• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

 mcc

5-15

Syntax Description
-w list List all of the possible warnings that mcc can

generate.
-w enable Enable all warnings.
-w disable[:<string>] Disable specific warnings associated with

<string>. See “Warning Messages” (MATLAB
Compiler) for a list of the <string> values. Omit
the optional <string> to apply the disable
action to all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. See “Warning Messages” (MATLAB
Compiler) for a list of the <string> values. Omit
the optional <string> to apply the enable action
to all warnings.

-w error[:<string>] Treat specific warnings associated with <string>
as an error. Omit the optional <string> to apply
the error action to all warnings.

-w off[:<string>]
[<filename>]

Turn off warnings for specific error messages
defined by <string>. You can also narrow the
scope by specifying warnings be turned off when
generated by specific <filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error messages
defined by <string>. You can also narrow scope
by specifying warnings be turned on when
generated by specific <filename>s.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using
isdeployed) in startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

5 Functions

5-16

if isdeployed
 warning on
end

• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files
generated by the compiler. You provide a list of functions, and the compiler generates
the wrapper functions and any appropriate global variable definitions.

• -Y Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

See Also

 mcc

5-17

Apps — Alphabetical List

6

Production Server Compiler
Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler app tests the integration of client code with MATLAB
functions. It also packages MATLAB functions into archives for deployment to MATLAB
Production Server.

Open the Production Server Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter productionServerCompiler.

Examples
• “Create a Deployable Archive for MATLAB Production Server” (MATLAB Compiler

SDK)
• “Build Excel Add-In and Deployable Archive” (MATLAB Compiler SDK)

Parameters
type — type of archive generated
Deployable Archive | Deployable Archive with Excel Integration

Type of archive to generate as a character array.

exported functions — functions to package
list of character arrays

Functions to package as a list of character arrays.

6 Apps — Alphabetical List

6-2

archive information — name of the archive
character array

Name of the archive as a character array.

files required for your archive to run — files that must be included with
archive
list of files

Files that must be included with archive as a list of files.

files packaged with the archive — optional files installed with archive
list of files

Optional files installed with archive as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character array

Flags controlling the behavior of the compiler as a character array.

testing files — folder where files for testing are stored
character array

Folder where files for testing are stored as a character array.

end user files — folder where files for building a custom installer are stored
character array

Folder where files for building a custom installer are stored are stored as a character
array.

packaged installers — folder where generated installers are stored
character array

Folder where generated installers are stored as a character array.

 Production Server Compiler

6-3

Programmatic Use
productionServerCompiler

See Also

Topics
“Create a Deployable Archive for MATLAB Production Server” (MATLAB Compiler SDK)
“Build Excel Add-In and Deployable Archive” (MATLAB Compiler SDK)

Introduced in R2013b

6 Apps — Alphabetical List

6-4

